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Abstract: Background: Respiratory pathologies, such as COVID-19 and bronchitis, pose sig-
nificant challenges for high-level athletes, particularly during demanding altitude training
camps. Metabolomics offers a promising approach for early detection of such pathologies,
potentially minimizing their impact on performance. This study investigates the metabolic
differences between athletes with and without respiratory illnesses during an altitude
training camp using urine samples and multivariate analysis. Methods: Twenty-seven elite
rowers (15 males, 12 females) participated in a 12-day altitude training camp at 1850 m.
Urine samples were collected daily, with nine athletes developing respiratory patholo-
gies (8 COVID-19, 1 bronchitis). Nuclear Magnetic Resonance spectroscopy was used to
analyze the samples, followed by data processing with Principal Component Analysis
(PCA) and Partial Least Squares Discriminant Analysis (PLS-DA), allowing to use Variable
Importance in Projection (VIP) scores to identify key metabolites contributing to group
separation. Results: The PLS-DA model for respiratory illness showed good performance
(R2 = 0.89, Q2 = 0.35, p < 0.05). Models for altitude training achieved higher predictive
power (Q2 = 0.51 and 0.72, respectively). Metabolites kynurenine, N-methylnicotinamide,
pyroglutamate, propionate, N-formyltryptophan, tryptophan and glucose were signifi-
cantly highlighted in case of respiratory illness while trigonelline, 3-hydroxyphenylacetate,
glutamate, creatine, citrate, urea, o-hydroxyhippurate, creatinine, hippurate and alanine
were correlated to effort in altitude. This distinction confirms that respiratory illness in-
duces a unique metabolic profile, clearly separable from hypoxia and training-induced
adaptations. Conclusions: This study highlights the utility of metabolomics in identifying
biomarkers of respiratory pathologies in athletes during altitude training, offering the po-
tential for improved monitoring and intervention strategies. These findings could enhance
athlete health management, reducing the impact of illness on performance during critical
training periods. Further research with larger cohorts is warranted to confirm these results
and explore targeted interventions.

Keywords: metabolomics; PLS-DA; respiratory pathology; altitude training; athlete
health; NMR

1. Introduction
Rowing is a discipline that combines endurance and power, requiring both high static

and dynamic capacities [1]. In elite athletes, rowing performance largely relies on the
oxygen uptake [2]. In the pursuit of improved respiratory capacity and oxygen consump-
tion, high-level athletes and trainers searched for efficient training methods. Altitude
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training has become a fundamental component of athletic preparation, by promoting a
range of physiological adaptations that enhance oxygen transport and utilization, especially
in endurance disciplines [3]. These adaptations result from mechanisms associated with
chronic hypoxic acclimatization, further amplified by the physiological stress imposed by
training under hypoxic conditions [4]. This practice is particularly recognized for its bene-
ficial effects on endurance performance, through the physiological adaptations induced
by exposure to hypoxia via altitude training camp [5]. Altitude camps are strategically
scheduled to maximize performance gains, either early in the season to build a solid fitness
foundation or shortly before competitions to elicit specific adaptations.

However, while these adaptations may enhance performance, the significant demands
imposed by altitude training can also affect the respiratory system, which, in elite endurance
athletes, may not always be fully adapted to meet the increased requirements of training
and competition [6]. Furthermore, hypoxia associated with intense training can lead to
immune depression, increasing the susceptibility of athletes to infections, particularly of
the respiratory tract [7]. This risk is exacerbated by cumulative stress factors commonly en-
countered during altitude training camps, such as sleep deprivation, moderate overtraining
and challenging environmental conditions. The respiratory system is especially vulnerable
as it is directly exposed to the environment and unusual training conditions [8]. Together,
these factors may impair immune function and make athletes more vulnerable to illness
during these critical preparation periods [9]. The onset of respiratory illnesses during these
key moments can disrupt training plans and compromise performance outcomes [10].

A comprehensive understanding of the mechanisms linking pathological responses
and physiological adaptations to hypoxic training may offer significant value. Such knowl-
edge could enable more precise training planification and allow for the calibration of
hypoxic stress to optimize physiological adaptations while minimizing the risk of inducing
or exacerbating pathological conditions [11]. These adaptations are ultimately directed to-
ward enhanced athletic performance and represent a tangible interface between physiology
processes and the athlete phenotype, a biological dimension that can be explored through
metabolomic approaches.

Metabolomics is the comprehensive and high-throughput analysis of low-molecular-
weight metabolites within a biological system, providing a dynamic snapshot of the organ-
ism’s physiological or pathological state at a specific time point [12]. Because metabolites
are the downstream products of cellular regulatory processes, their profiling provides a
sensitive readout of biochemical activity and, by extension, the functional state of cells,
tissues or organisms. This makes metabolomics particularly powerful for linking external
environmental conditions, lifestyle factors or physiological stressors to molecular and
systemic responses [13,14]. Its sensitivity to detect early and subtle metabolic shifts allows
the identification of potential biomarkers or predictors of physiological adaptation before
phenotypic changes become evident [15]. This capacity is particularly valuable in contexts
such as exercise physiology, where metabolic flexibility and adaptation are central con-
cerns [16,17]. If other methods such as mass spectrometry are available and more sensitive
to metabolite concentrations, proton Nuclear Magnetic Resonance (1H NMR) spectroscopy-
based metabolomics is commonly employed in this context, offering highly reproducible
protocols for metabolite identification [18]. Following this purpose, using urine samples
with 1H NMR offers several advantages: it is non-invasive, readily obtainable in large
volumes and requires minimal preparation. [19,20], characterizing respiratory disease con-
ditions [21,22] and tracking training responses, both under normal conditions [23–25] and
in specific conditions such as hypoxia [26,27] underscoring its relevance in integrative and
personalized physiology.
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The objective of the present study is to characterize the specific metabolic alterations
associated with respiratory illnesses that arise during an altitude training camp in elite
rowers, and to distinguish these changes from those induced by physiological adaptations
to sustained hypoxic training. While previous studies have explored metabolic responses to
either respiratory disease or altitude exposure independently, few have investigated their
overlap in a real-world, high-performance athletic setting. By applying ¹H NMR-based uri-
nary metabolomics, this study aims to identify distinct metabolite signatures and disrupted
metabolic pathways specifically linked to respiratory pathologies, while rigorously account-
ing for the confounding effects of hypoxia and intensive training loads. This approach not
only enhances our understanding of the metabolic impact of respiratory conditions in elite
athletes but also contributes to the development of non-invasive diagnostic strategies for
early detection and monitoring of illness in high-altitude sports environments.

2. Materials and Methods
2.1. Participants

Twenty-seven high-level rowers (15 men and 12 women, Table 1) from the French
rowing federation participated in this study. All were taking part in a 12-day altitude
training camp at 1850 m of altitude organized by the French rowing federation. No external
athletes were included and no interventions on the training or training camp plan were
made by any of the investigators. Participants resided at sea level, with no stays above
500 m in the 3 months preceding the protocol introduction. They trained at least 8 h per
week in the previous 5 years and had no respiratory diseases, cardiovascular diseases or
tobacco use. No specific diet was followed during the training camp for the purpose of this
study. All athletes followed a meal plan provided for the whole team by a professional
nutritionist from the training camp center.

Table 1. Anthropometric characteristics of study participants. Values are reported as mean ± standard
deviation (SD), median, minimum (Min) and maximum (Max) for age, height, weight and body
mass index (BMI). p-values are resulting from a t-test between men and women values; * statistical
difference with p < 0.05.

Men ♂ (n = 15)
Women ♀ (n = 12) Mean ± SD Median Min Max

Age (years) ♂ 26.4 ± 4.3 26.0 21.0 34.0
♀ 24.5 ± 2.5 24.0 20.0 29.0

Height (cm) ♂ 191 ± 5.8 * 193.5 179.0 196.0
♀ 179.4 ± 7.8 177.0 168.0 197.0

Weight (kg) ♂ 88.8 ± 7.7 * 90.0 70.0 97.0
♀ 71.5 ± 7.0 73.0 60.0 81.0

BMI
♂ 24.1 ± 1.1 23.9 21.8 25.5
♀ 22.3 ± 2.4 21.9 18.0 25.4

Approval for this study was obtained from an ethics committee (CERSTAP IRB00012476-
2023-17-10-271). All participants gave their written informed consent.

2.2. Experimental Design

Participants took part in their federal altitude training camp as usual. There was no
intervention in training. Urine samples were collected from all participants throughout the
entire duration of the training camp, each morning immediately upon waking and before
breakfast. To ensure the integrity of the samples, they were immediately frozen and stored
at −80 ◦C until analysis. A total of 292 urine samples were collected. The health status
(symptoms and antigenic test for COVID-19) of all athletes was assessed each morning by
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discussion with the medical staff. Of the 27 participants, 9 athletes (4 men and 5 women)
developed respiratory illnesses between day 5 and day 12 of the training camp. These
cases, 8 COVID-19 infections and 1 bronchitis, were identified incidentally during routine
medical monitoring conducted by the team’s medical staff. Monitoring included COVID-19
screening and clinical evaluation in response to symptom occurrence. Although individual
symptom profiles were not systematically recorded, all cases presented with classical,
respiratory symptoms consistent with upper respiratory tract infection (sore throat, fatigue,
mild fever), and none required hospitalization or specific medical intervention beyond
routine care. No other respiratory infections were diagnosed or suspected during the camp.

2.3. Sample 1H NMR Acquisition and Data Processing

Urine samples were thawed at room temperature just before analysis and were vor-
texed for homogenization. An amount of 600 µL of urine was mixed with 150 µL of
phosphate buffer (50 mM, pH 7.2) in D2O containing 0.002% of 3-(trimethylsilyl)propionic-
2,2,3,3-d4 acid sodium salt (TMSP) (Eurisotop, Saint-Aubin, France). The mixture was
vortexed and centrifuged at 14,000 rpm for 15 min. A volume of 550 µL of the supernatant
was transferred into a 5 mm Norell 500-7 1H NMR tube.

Urine samples for 1H NMR analysis were randomized before acquisition and 1H NMR
spectra were acquired using a 500 MHz ECZR JEOL spectrometer (Tokyo, Japan). For each
spectrum, a presaturation of the water peak was performed and a total of 32 scans was
collected in 65K data points over a spectral width of 12 ppm, using a relaxation delay of
10.64 s, at 25 ◦C. Shims criteria were optimized based on the TMSP half-peak width, which
was set at a maximum of 1Hz and its variability that of the signal-over-noise ratio across all
samples did not exceed 10%. All 1H NMR analyses were performed on the bio2mar MSXM
platform at the University of Perpignan (https://bio2mar-msxm.univ-perp.fr/ (accessed
on 13 June 2025)).

An exponential function corresponding to a line broadening of 0.3 Hz was applied
on all free induction decay signals prior to Fourier transformation. The resulting spectra
were then processed using NMRProcFlow software (v1.4) [28] for baseline correction, phase
adjustment, and chemical shift referencing to the TMSP internal standard. Spectra were
then binned into segments of variable size using the “intelligent bucketing” function, and
the area under each bin was calculated for each bucket.

2.4. Data Analysis and Statistics

Values are presented in “mean ± standard deviation (SD)” format. Statistical analysis
was conducted using R (v4.4.2) [29] and the significance level was fixed at 0.05.

Data were normalized by constant sum and scaled (mean-centered and divided by
the SD of each variable). To explore the variance in the metabolomic data and identify
potential grouping patterns, a Principal Component Analysis (PCA) was conducted as an
unsupervised method. PCA reduces the dimensionality of the dataset by summarizing
it into Principal Component (PC), which represents the directions of maximum variance.
After that, a Partial Least-Square Discriminant Analysis (PLS-DA) was conducted to cre-
ate a supervised model that aimed to maximize class separation, by using labels, while
identifying the most relevant features contributing to that separation based on the Vari-
able Importance in Projection (VIP). Each identified bucket (each one corresponding to
a VIP) was, if possible, associated with a metabolite based on the current literature and
on the database available in Chenomx NMR suite software (Chenomx, Inc., Edmonton,
AB, Canada). The performances of those models were assessed using Leave-One-Out
Cross-Validation (LOOCV) with the goodness of fit (R2) and the ability of prediction (Q2)
metrics. A permutation test was used to assess that the results were not obtained by chance,

https://bio2mar-msxm.univ-perp.fr/
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showed by pQ2 values (level of significance between the performance of a computed model
and random ones).

The statistical differences in VIP between groups were computed by repeated Wilcoxon
tests, and p-values were adjusted using the False Discovery Rate (FDR) algorithm from
Benjamini and Hochberg [30].

3. Results
3.1. Baseline Characteristics

To address the primary objective of this study, namely, to characterize metabolic
effects associated with respiratory illness and distinguish them from those induced by
altitude training, three targeted datasets were designed and analyzed. This approach
aimed to isolate infection-specific metabolic responses while accounting for confounding
physiological changes induced by hypoxia and training load. The first dataset (DS1)
focused on identifying illness-associated metabolic alterations by comparing urine samples
collected on the day athletes reported respiratory symptoms with their corresponding
baseline samples from the first day of the training camp, prior to any symptom onset. The
second dataset (DS2) aimed to characterize acute metabolic responses to altitude exposure
and training by comparing samples from asymptomatic athletes collected on the first
and third days. As these time points represent early hypoxic exposure in the absence of
illness, DS2 served as a control for evaluating short-term altitude-induced changes. The
third dataset (DS3) focused on the metabolic impact of prolonged hypoxia and training
stress by comparing samples from the first and eighth day, the latter coinciding with the
average symptom onset in affected athletes. This dataset was used to distinguish long-term
altitude adaptations from early pathological responses. DS1 included 18 samples (9 ill and
9 healthy controls), while DS2 and DS3 comprised 34 and 32 samples, respectively, from
healthy athletes.

The PCA carried out on all the available data did not show any outliers. Similarly, the
PCA used on each of the previously described data sets did not allow for the discrimination
of the investigated conditions (Figure S1).

3.2. Effects of Respiratory Illnesses on Metabolic Profiles (DS1)

In the analysis of metabolic alterations associated with respiratory illnesses, PLS-
DA effectively discriminated between groups based on predefined class labels. The first
two components of the model explained 13% and 9% of the total variance, respectively with
cross-validation yielding an R2 of 0.81 and a Q2 of 0.36 (Figure 1A). Model validity was
supported by a permutation test, indicating statistical significance with a pQ2-value < 0.05
(Figure S2A).

Among the most influential variables (VIP scores, p < 0.05), metabolites such as kynure-
nine, N-methylnicotinamide, pyroglutamate, propionate, N-formyltryptophan, tryptophan
and glucose were identified. Two of the ten most discriminant spectral buckets remained
unassigned (Table 2).

Table 2. Identified VIPs’ buckets, for the model investigating pathology impacts (DS1, Healthy vs.
Ill), with their corresponding metabolites. Negative mean values denote lower concentration in
Ill athletes.

Buckets Mean SD p-Value Metabolite

B1_1239 −0.39 0.13 0.0314685 Propionate
B1_1539 −0.51 0.25 0.0625257 Unknown 1
B2_4381 −0.61 0.31 0.0244344 Pyroglutamate



Metabolites 2025, 15, 408 6 of 15

Table 2. Cont.

Buckets Mean SD p-Value Metabolite

B4_1758 1.22 0.34 0.0141917 Kynurenine
B4_4010 −0.87 0.45 0.0399835 Unknown 3
B4_6451 −0.44 0.65 0.4894282 Glucose
B7_2429 1.07 0.91 0.0399835 N-Formyltryptophan
B7_3101 1.18 1.17 0.0770053 Tryptophan
B7_3634 1.39 1.35 0.0399835 Unknown 4
B9_2733 0.81 0.41 0.0187577 N-Methylnicotinamide

(A) 

(B) 

(C) 

Figure 1. Cont.
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(A) 

(B) 

(C) 

Figure 1. (A) PLS-DA score plot for the model investigating the effects of respiratory illnesses,
comparing their first training camp day (blue) and the day they declared symptoms (red) (DS1).
(B) PLS-DA score plot investigating the effects of training and hypoxia, comparing their first training
camp day (blue) and the third one (red) (DS2). (C) PLS-DA score plot investigating the effects of
training and hypoxia, comparing their first training camp day (blue) and the eighth one (red) (DS3).

3.3. Effects of Altitude Training on Metabolic Profiles (DS2 & DS3)

PLS-DA discriminated metabolic profiles associated with altitude training in both
datasets (Figure 1B,C), identifying several key VIPs (Table 3). The models demonstrated
robust performance, with R2 values of 0.93 and 0.99 and Q2 values of 0.51 and 0.72 for
the DS2 (day one vs. day three) and DS3 (day one vs. day eight) comparisons, respec-
tively. The statistical significance of the models was confirmed by a permutation test, with
pQ2-value < 0.05 (Figure S2B,C).

Table 3. Identified VIPs’ buckets, for the model investigating hypoxia and training impacts (DS2 and
3, day 1 vs. day 3 and 8), with their corresponding metabolites. Negative mean values denote lower
concentration on day 3 or 8 compared to day 1.

Buckets Mean SD p-Value Metabolite

B3_0612 1.22 0.22 0.0002649 Creatinine
B3_7065 −1.22 0.8 0.0000024 Unknown 2
B3_9187 1.06 0.65 0.0000103 Creatine
B5_7836 −1.88 0.53 0.0000650 Urea
B6_7557 0.67 0.2 0.0000082 3-Hydroxyphenylacetate
B8_5324 1.51 1.06 0.0000000 Unknown 5
B8_5510 1.14 0.56 0.0000000 Unknown 6
B8_5647 0.67 0.47 0.0000103 Unknown 7
B8_8263 1.27 0.47 0.0000024 Trigonelline
B1_4223 −0.14 0.04 0.0020369 Alanine
B2_3688 −1.52 0.5 0.0000039 Glutamate
B2_5771 0.86 0.68 0.0000718 Citrate
B3_4768 1.76 2.22 0.0000029 3-Hydroxyphenylacetate
B7_5531 0.65 0.28 0.0002836 Hippurate
B7_8284 0.64 0.26 0.0002358 o-Hydroxyhippurate
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The most significant VIPs (all p < 0.001) included trigonelline, 3-hydroxyphenylacetate,
glutamate, creatine, citrate, urea, o-hydroxyhippurate, creatinine, hippurate and alanine.
Additionally, seven spectral buckets, corresponding to four unidentified metabolites, were
significantly impacted but remain unassigned (Table 3).

The temporal evolution of these VIPs is illustrated in Figure 2, showing their evolution
during the training camp and comparing evolutions in healthy and in ill athletes.

Figure 2. Mean metabolite concentration over time for healthy (red line) and ill (blue line) individuals.
Each subplot corresponds to a specific metabolite, with error bars indicating the standard error of the
mean, showing their evolution between the first training camp day (First day), the third training camp
day (Third Healthy) and the eighth day or the day of symptoms occurrence (Mid Healthy/Patho
day). Differences in trends between conditions highlight potential biomarkers.

A representative 1D 1H NMR spectrum of urine athletes is annotated with these
metabolites in Supplementary Figure S3.

4. Discussion
This study aimed to characterize the metabolic signatures of respiratory illnesses in

elite rowers undergoing hypoxic exposure, and to differentiate these signatures from over-
lapping metabolic adaptations induced by altitude training. By comparing symptomatic
athletes (DS1) with asymptomatic athletes undergoing altitude training (DS2 and DS3), we
identified illness-specific metabolic alterations that are distinct from those associated with
hypoxia-induced physiological adaptation.

4.1. Metabolic Impact of Altitude Training in Elite Rowers

Our findings indicate that the altitude training camp environment significantly af-
fected urinary concentrations of several metabolites, including creatine, creatinine, cit-
rate, trigonelline, alanine, urea, glutamate, hippurate, 3-hydroxyphenylacetate, and o-
hydroxyhippurate. These metabolites have been previously associated with physiolog-
ical responses to hypoxia and/or endurance exercise, supporting the notion that their
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modulation is consistent with established metabolic adaptations to altitude training. In
particular, creatine and creatinine, well-recognized markers of muscle metabolism and
energy turnover, exhibited increased concentrations over time, especially during the initial
phase of hypoxic exposure (Table 3). These changes are indicative of elevated physiological
stress and muscle remodeling triggered by training at altitude, in agreement with prior
observations in hypoxia-exposed athletes [31]. Notably, creatine has also been proposed
as a potential biomarker for acute mountain sickness reinforcing its relevance in hypoxic
conditions [32].

Citrate, a key intermediate of the tricarboxylic acid cycle, also showed elevated levels,
suggesting enhanced mitochondrial activity and oxidative metabolism. This adaptation is
critical for maintaining ATP synthesis efficiency under reduced oxygen availability [33].
Alanine, involved in the glucose–alanine cycle, facilitates nitrogen transport and metabolic
buffering between muscle and liver [34]. Its observed decrease may reflect a metabolic
shift toward alternative energy pathways to support endurance performance under hy-
poxic stress.

Conversely, reductions in glutamate and urea concentrations were observed. Glu-
tamate, central to nitrogen metabolism and neurotransmission, along with urea, the end-
product of amino acid catabolism, may indicate decreased transamination rates or redistribu-
tion of nitrogen for anabolic processes such as tissue repair. This pattern aligns with previous
evidence of hypoxia-induced reductions in glutamate levels [35], and suggests a metabolic
reorganization to accommodate the sustained training load in a low-oxygen environment.

Beyond energy and nitrogen metabolism, altitude exposure also appeared to influ-
ence gut microbiota-related metabolism and oxidative stress responses. The elevation of
hippurate and 3-hydroxyphenylacetate suggests gut microbial involvement and adaptive
responses to oxidative stress. Hippurate is a known product of microbial metabolism and
polyphenol degradation, and its increased presence may reflect training-induced changes in
microbiota composition [36,37]. Similarly, 3-hydroxyphenylacetate, a downstream metabo-
lite in phenylalanine and tyrosine pathways, has been associated with oxidative stress [38],
and its rise during training at altitude may indicate increased free radical production from
mitochondrial stress.

Additionally, elevated o-hydroxyhippurate levels, a gut- and liver-derived conjugate,
may reflect enhanced detoxification processes aimed at maintaining metabolic homeostasis
in response to intensified physiological demands.

Together, these results suggest that creatine and creatinine could serve as useful
markers of muscle stress and recovery status during altitude training [31,32]. Similarly,
alterations in glutamate and urea could provide insights into nitrogen handling and protein
catabolism, potentially guiding training load management [35,39]. The modulation of gut
microbiota-associated metabolites, such as hippurate and 3-hydroxyphenylacetate, further
highlights the link between hypoxia, metabolism and gut health, suggesting that tailored
nutritional strategies may support metabolic resilience and recovery [36–38].

Finally, trigonelline was identified as a VIP in our models and has also been reported
in previous studies on endurance athletes. However, its levels are most likely influenced
by coffee intake [40], and should therefore be interpreted with caution.

These observations are in line with previous metabolomic studies examining the
impact of endurance exercise [41] and hypoxic [42] exposure on systemic metabolism.
Pechlivanis et al. [24] reported exercise-induced alterations in urinary metabolites related to
energy production and amino acid metabolism, while Lewis et al. [43] identified shifts in tri-
carboxylic acid cycle intermediates and markers of oxidative stress following acute physical
exertion. Together, these studies support the relevance of the metabolic adaptations identi-
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fied in the present work, emphasizing the interplay between energy metabolism, nitrogen
balance, and gut microbial activity during prolonged exercise under hypoxic conditions.

4.2. Respiratory Pathologies and Their Metabolic Impact During an Altitude Training Camp

The metabolic signatures associated with respiratory illnesses observed in this study,
mainly COVID-19, closely align with previously reported urinary profiles [44]. Significant
disorders were identified across multiple metabolic pathways, notably those related to
immune function, energy metabolism and gut microbiota activity.

Key alterations were observed in the kynurenine pathway, which plays a central role
in immune regulation and inflammatory responses. Elevated concentrations of kynurenine
and tryptophan in symptomatic athletes are consistent with inflammation-driven activation
of tryptophan metabolism, a hallmark feature of COVID-19 and other viral infections [45].
In addition, N-formyltryptophan, a derivative of tryptophan, was identified as a discrim-
inant metabolite in symptomatic individuals. This compound is implicated in oxidative
stress signaling and immune modulation, further supporting the notion that respiratory
infections trigger a shift toward pro-inflammatory and immunoactive metabolic states.

Beyond immune activation, the data revealed metabolic disruptions associated with
cellular energy production and redox balance. N-methylnicotinamide, a downstream prod-
uct of niacin metabolism and a key intermediate in nicotinamide adenine dinucleotide
(NAD+) biosynthesis, was significantly elevated in symptomatic athletes. This increase
likely reflects enhanced NAD+ turnover and oxidative stress, both characteristic of infection-
related metabolic disturbances. Similar alterations in NAD+ metabolism have been linked
to immune dysfunction and disease severity in hospitalized COVID-19 patients [46]. More-
over, pyroglutamate, a metabolite involved in the glutathione cycle and crucial for main-
taining antioxidant defense was found to be decreased. Reduced pyroglutamate levels may
indicate impaired glutathione homeostasis, a known consequence of systemic inflammation
and oxidative stress in viral infections, including COVID-19 [47,48].

Lastly, the detection of altered levels of propionate, a short-chain fatty acid produced by
the gut microbiota through the succinate pathway, points to gut immune axis involvement
in the metabolic response to infection. Propionate is known to modulate immune responses
and maintain intestinal barrier function. Its decrease in symptomatic athletes, compared
to stable levels in healthy controls, suggests that the observed changes are more likely
infection-related than diet-dependent. This is consistent with previous reports showing
reduced fecal propionate concentrations in COVID-19 patients, indicative of gut dysbiosis
and its contribution to systemic inflammation [49]. Altogether, these findings support
the concept that respiratory illnesses, including COVID-19, elicit coordinated metabolic
responses involving immune activation, oxidative stress and microbial dysregulation.

4.3. The Complex Interactions of Pathologies and Hypoxia

The metabolic disruptions observed in symptomatic athletes were distinct from those
induced by altitude training alone. While the hypoxic environment and physical stress
associated with altitude training promote beneficial adaptations that enhance oxygen
utilization and energy metabolism [50], respiratory infections appear to disrupt these pro-
cesses, leading to complex metabolic interactions that can negatively impact performance.
Both altitude training and infection influence key physiological domains, namely immune
function, oxidative stress and energy metabolism, making it challenging to differentiate
between adaptive and pathological metabolic responses. Notably, all VIP metabolites were
altered under both conditions (Figure 2), with group separation appearing to rely primarily
on the magnitude of these changes rather than their direction.
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Among the discriminant metabolites, the kynurenine pathway emerged as a key point
of overlap, as it is activated both by hypoxia-induced inflammatory processes [51,52] and
by immune responses to infection [45]. Elevated kynurenine and tryptophan levels in
symptomatic athletes, compared to healthy ones, suggest that respiratory illness exac-
erbates immune activation, potentially delaying recovery. Although altitude exposure
may also modulate this pathway, the absence of significant changes in kynurenine and
tryptophan levels among healthy athletes after eight days at altitude indicates that the
observed increases are more likely attributable to infection rather than hypoxia-driven
adaptation. Similarly, N-methylnicotinamide, a metabolite linked to NAD+ turnover, was
significantly elevated in symptomatic individuals, reflecting increased oxidative stress and
mitochondrial strain. This dysregulation may counteract beneficial hypoxic adaptations
and compromise the intended outcomes of altitude training.

Energy metabolism was also affected by both conditions. Creatine and creatinine,
markers of muscle workload and adaptation, increased as expected during altitude expo-
sure [31]. However, in the context of infection, the metabolic shift may favor catabolism
over recovery, thereby impeding performance gains. Glutamate, a central amino acid
in nitrogen balance, showed opposing trends in infected versus healthy athletes, further
emphasizing the divergent metabolic trajectories between adaptive and pathological re-
sponses. At the level of the gut microbiota, symptomatic athletes exhibited a reduction in
propionate, a short-chain fatty acid produced by gut bacteria, suggesting inflection-induced
dysbiosis. In contrast, propionate levels remained stable in healthy athletes, supporting
energy production and recovery processes [53].

These findings have important implications for athlete monitoring and training prepa-
ration. The additional metabolic strain of illness during altitude exposure may prolong
recovery, interfere with adaptive processes and increase the risk of overtraining. Metabolic
monitoring could provide a valuable tool to differentiate between normal physiological
adaptation and early signs of illness, thereby enabling more precise adjustments to training
loads. Moreover, ensuring sufficient recovery before altitude exposure, along with targeted
nutritional strategies, such as niacin supplementation to support NAD+ metabolism or
probiotic intake to stabilize the gut microbiota, may help mitigate these adverse effects
of infection on training outcomes. Ultimately, a better understanding of these metabolic
signatures can enhance altitude training protocols and contribute to optimizing athlete
health and performance [54].

5. Conclusions
This study highlights the potential of metabolic profiling to differentiate physiological

adaptations to altitude training from metabolic disturbances associated with respiratory
illnesses in elite athletes. While both conditions elicit stress-related metabolic responses,
our results reveal distinct underlying signatures, supporting the utility of metabolomics for
the early detection of maladaptation or illness.

However, the findings are constrained by the relatively small sample size and the
specificity of the athlete cohort, which may limit generalizability and subgroup analysis
based on sex, despite identical training modalities. Additionally, the inherent complexity of
real-world training environments presents challenges in fully disentangling the individual
contributions of hypoxia, training load and infection.

Despite these limitations, the study opens promising perspectives for the application
of metabolomics in athlete monitoring, particularly during physiologically demanding
periods such as altitude training camps. Future research should focus on validating the
identified biomarkers in larger, more diverse populations, characterizing their longitudinal
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dynamics across training and recovery phases, the differences between sexes, and assessing
targeted interventions to enhance performance while safeguarding athlete health.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/metabo15060408/s1, Figure S1: (a) PCA score plot on data from
subjects with symptoms comparing their first training camp day (blue) and the day they declared
symptoms (red) (DS1). (b) PCA score plot on data from subjects without symptoms comparing
their first training camp day (blue) and the third one (red) (DS2). (c) PCA score plot on data from
subjects without symptoms comparing their first training camp day (blue) and the eighth one (red)
(DS3); Figure S2: Permutation results on each data set (A: DS1; B: DS2, C: DS3). Each plot shows the
distribution of R2Y (grey) and Q2 (black) values from 1000 permutations of the class labels (y-axis),
plotted against the similarity between permuted and actual group labels (x-axis). The original model
values (at similarity = 1) are displayed on the far right of each plot. A pQ2 value < 0.05 indicates
that the predictive power of the model is significantly better than would be expected by chance;
Figure S3: 1H NMR urine spectra sample (ill athlete on day 9) with the identified VIPs from the model
investigating the effect of illness. The inset highlights a specific spectral region (7 to 8 ppm).
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