

What is Exercise Induced Hypoxemia

- EIH is a physiological phenomenon exhibited by some high-level endurance trained athletes (Dempsey et al., 1984)
- At least PaO₂ 10mmHg and/or 4% of SpO₂ between rest and end of maximal exercise (Prefaut et al., 2000)
- Between 52 and 70% of endurance trained athletes (Powers et al., 1988; Constantini et al., 2017)
- Multi-factorial but principally due to inadequate hyperventilation and gas exchange limitations (Durand et al., 2000)

Severity depends of SpO₂ minimal value:

- 95-93% SpO₂ → mild EIH
- 93-88% SpO₂ → moderate EIH
- <88% SpO₂ \rightarrow severe EIH

EIH consequences

Same VO₂max while SpO₂ fall is greater for EIH (Chapman et al., 1999; Gaston et al., 2016)

 \Rightarrow Specific adaptations (muscular and cerebral oxygenation) (Raberin et al., 2019)

- Drop of VO₂max greater for EIH than NEIH with a reduction in SpO₂max and max HR (Gaston et al., 2016; Raberin et al., 2019)
- Lower ventilatory response to hypercapnia (Granger et al., 2020)
- <u>A</u>.
 - After 5 days of moderate altitude \rightarrow lower resting and maximal SpO_2 and greater Qc in EIH than NEIH

 \rightarrow Specific cardiovascular adaptations that enabled the achievement of the same VO₂max in chronic hypoxia

Ventilatory and cardiovascular parameters are impacted on EIH athletes exposed to acute and/or chronic hypoxia

EIH and altitude/hypoxia

- More and more endurance trained athletes experienced altitude/hypoxia
 → Among them EIH athletes (due to prevalence of the phenomenon)
- Numerous studies about altitude/hypoxic training

- Various and contradictory results
- ➤ Role of EIH?
- Not measured!

Artificial intelligence in sport

• Al approaches can be used to predict or estimate features

Davidson et al. (2023) estimate VO_2 using LSTM networks with speed, HR, cadence, etc.

- We observe an increased amount of studies using AI in sport sciences
- Such approach are useful to:
 - Analyze large amount of data
 - Detect slight changes and variations

Objective of the study

- EIH impact the responses to altitude/hypoxia at rest and during exercise
- EIH is easy to measure but isn't done in studies investigating altitude/hypoxia training
- However, these studies generate recommendations and guidelines for altitude/hypoxia training for athletes and coaches
- More and more AI is used in sport sciences and could be pertinent for this work

In order to re-analyze already acquired data

The purpose of this work was to classify athletes as EIH or NEIH without SpO₂ measurement using classic statistics and AI

Material & method

Population:

- From various works done by our team and others (retrospective study)
- 125 males, endurance trained athletes \rightarrow EIH n = 64; NEIH n = 61

	age	height	weight	train_volume	train_years
NEIH	31.8 ± 7.9	177.2 ± 6.5	70.5 ± 7.5	10.1 ± 5.5	11.5 ± 8.3
EIH	33.2 ± 8.1	179 ± 6.3	72.2 ± 8.2	11.9 ± 5.2	11.4 ± 7.6

Material & method

Data and design:

- From maximal exercise with continuous gas exchange measurements:
 - HR, VE, BF, VO₂, VCO₂, VE/VO₂, VE/VCO₂, VO₂/VCO₂
 - Median, mean, sd, rms, max, min, relative
- SpO₂ measured with an ear oximeter (Nonin Palmsat) \rightarrow at rest and maximum effort end

Results: EIH status

Data placed in a 2 dimensional place Cluster based on distances without using saturation

- Colors = cluster
- Forms = EIH status

EIH & NEIH are mixed in clusters

Clustering methods are not powerful enough to discriminate EIH & NEIH subjects

Results: EIH status

Classification without saturation data 88% accuracy for EIH/NEIH status Insights about the features used for this classification

Kappa
0.437299035
McnemarPValue
0.789268026

Kappa 0.437299035

AccuracyLower 0.575094643

AccuracyUpper 0.837689399

Results: EIH intensity

Data placed in a 2 dimensional place Cluster based on distances without using saturation

- Colors = cluster
- Forms = EIH intensity

Intensities are mixed in clusters

Clustering methods are not powerful enough to discriminate EIH intensities

Results: EIH intensity

Classification without saturation data 80% accuracy for EIH intensity Insights about the features used for this classification

AccuracyUpper

0.837689399

AccuracyLower

0.575094643

Kappa

12

AccuracyNull

0.520000000

Discussion

• Most effective method: LightGBM

This approach is able to classify subjects using only gas exchange data

- Accuracy are correct and results are coherent:
 - 88% and 80% for status and intensity respectively
 - Most important factor for classification have a physiological interest: VO₂max, HR, age, etc. \rightarrow physiological factors for EIH (Prefaut et al., 1994)

Conclusion

We are able to classify and detect EIH athletes using only gas exchange data

Those results can be used for research purpose

Future perspectives:

- 1. Increase data amount
- 2. Create other models (impact of altitude on EIH athletes performances)

The end

Cluster number choice

Levels: 2 & 4 \rightarrow status and intensity

Clustering method

LighGBM

LightGBM: GOSS

LightGBM: EFB

feature1	feature2	feature_bundle
0	2	6
0	1	5
0	2	6
1	0	1
2	0	2
3	0	3
4	0	4

Al is defined as the ability of a system to interpret and learn from exterior data correctly (Kaplan et al., 2019)